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The shallow-ice approximation is used to analyse the normal-mode stability of long-
wavelength, thermally coupled, free-surface flows of glaciers and ice sheets along
infinite flow sections. The viscosity of the ice changes with temperature, and the ice
is also thermally coupled with the bedrock. An assumption of quasi-uniform flow,
where the downstream flux of mass and energy is assumed to be constant over
relatively short wavelengths, permits vertical advection due to accumulation to be
considered. The assumption allows realistic representation of the vertical velocity
distribution and temperature distributions within the modelled flow. Nevertheless, the
linearized equations are formally independent of the assumption of quasi-uniform
flow. The linearized equations are Fourier-transformed over the horizontal plane and
an algebraic eigenvalue problem constructed which considers the Fourier-transforms
of the vertically varying temperature and thickness. The dependence of the eigenvalues
on wavenumber, both parallel and orthogonal to flow, accumulation rate, geothermal
heat flux, surface temperature and slope is computed. Extensive linearly unstable
regimes where the base is well below melting point are found, which correspond
only approximately to negative slopes in the flux/thickness relationship (supercritical
zones). The most unstable parts of these regimes have finite along-flow wavelength,
and have very long transverse wavelength. These modes are found to be more unstable
in two senses: (i) they bifurcate for lesser thicknesses; (ii) they have greater growth
rates. All computed wave velocities of unstable modes were downslope. Less unstable
modes with short and medium transverse wavelengths are found which excite the
temperature field only. Time constants range between ten and one thousand years.
There is no strong evidence for stream-pattern formation through a thermoviscous
instability mechanism.

1. Introduction
A normal-mode analysis of thermoviscously coupled shallow flows of ice is

presented in this paper. MacAyeal (1992) has suggested that thermoviscous coupling
is a significant factor in the dynamical variability of ice streams, and it has further
been suggested that it is an essential component of a symmetry-breaking pattern-
forming instability that leads to the formation of ice streams (Fowler & Johnson
1996; Payne & Dongelmans 1997). All previous glaciological analyses have been for
zero wavenumber, and consequently cannot be used for understanding the spatial
aspects of instabilities. Analogous geophysical flows do not seem to have been
extensively analysed in this way, meaning that the relevance of the analysis extends
beyond glaciology. The principal conclusion is that the most unstable mode has finite
longitudinal wavelength, but possesses infinite transverse wavelength – a ‘Squire’s
theorem result’. In consequence there is not a strong indication of ice streams emerging
spontaneously through a symmetry-breaking instability.
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The thermoviscous instability stems from the strong temperature dependence of the
viscosity of ice and the sliding viscosity (sliding switches on at the pressure melting
point of ice), while the flow of ice affects the temperature within an ice sheet or
glacier, through advection and frictional dissipation. Early studies by Nye (1971),
Clarke, Nitsan & Paterson (1977), Fowler & Larson (1980a), Yuen & Schubert (1979)
and Yuen, Saari & Schubert (1986) considered the stability of thermo-mechanically
coupled flows down an infinite plane. These studies focused on the role of multiple
steady states in the temperature and in the ice flow, introduced by coupling of
the internal heating and the temperature, in determining the qualitative dynamics.
Fowler & Larson (1980b) and Yuen & Schubert (1979) both suggest that these flows
are linearly stable, but unstable in the presence of finite-amplitude perturbations.
In contrast, both Nye (1971) and Clarke et al. (1977) found linear instabilities. All
these authors considered the vertical dimension only, and none therefore performed a
normal-mode analysis which included finite horizontal wavelengths. Moreover, those
who did consider linear stability did not fully couple their linearized temperature
evolution equations with the ice-thickness evolution equation. An extensive review
is found in Hutter (1983, Chap. 3), where the omissions of previous studies are
discussed. Some of these issues are addressed here, in particular by: (i) considering
finite wavelengths in two horizontal dimensions; and (ii) considering the coupling
between the temperature and the evolving free surface.

Following on from these earlier works, a large number of numerical experiments
have considered more realistic ice-sheet geometries (MacAyeal 1992, 1993; Payne
1995; Greve & MacAyeal 1996; Pattyn 1996; Marshall & Clarke 1997). The results
suggest that the coupling between the temperature-dependent viscosity and sliding
of ice sheets, dissipation and heat transport can lead to situations where limit
cycles or more complex behaviour (in an infinite-dimensional phase space) can
occur. Numerical experiments (e.g. Fowler & Johnson 1996, Payne & Dongelmans
1997) suggest that when two horizontal dimensions are considered, more complex,
finger-like, structures emerge. Numerical results are justified by physically-motivated
plausibility reasoning (Payne et al. 2000), although some of this reasoning may be
over-simplified (Hindmarsh 2001). The numerical calculations reported above simulate
complex dynamical phenomena, and some more rigorous mathematical confirmation
of the validity of at least a subset of the solutions is needed. An aim of this
paper is to relate the numerical solutions to the earlier analytical and semi-analytical
studies. An important caveat is that the stability analysis presented in this paper
does not deal with cases where significant horizontal variations of the base-case fields
(e.g. the bedrock topography, the temperature) are involved. It is conceivable that
these long-wavelength horizontal variations significantly modulate the stability of ice
sheets.

Vertical advection of ice replenished by snowfall affects temperature fields within
ice. A device introduced by Clarke et al. (1977) is used, which permits consistent
consideration of vertical advection whilst retaining a horizontally uniform zeroth-
order flow on the infinite plane. Mass is added to the upper surface as accumulation
on the surface of an ice sheet; however, the horizontal velocity or thickness are
assumed not to increase significantly over length scales of interest, such that we
can treat a base case of uniform flow. This is the assumption of quasi-uniform flow.
The same argument applies to the heat added to the system through geothermal
heating and internal dissipation, meaning that the temperature profile is assumed to
remain unchanged downstream. If the accumulation rate is zero, the quasi-uniformity
becomes uniformity.
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The significance of the assumption of quasi-uniform flow is that by permitting
vertical transport, one creates vertical distributions of temperature that are realistic,
for example the basal boundary layer (e.g. Morland 1984). It turns out that formally,
the perturbation equations are independent of the accumulation rate (and thus
whether we have assumed uniformity or quasi-uniformity), although the accumulation
rate does (and must) affect the zeroth-order solution. An important a posteriori
result is that including vertical advection does not significantly affect the qualitative
dynamics.

This study highlights the observation that thermomechanical coupling occurs in
a number of different ways. (i) Thermoviscous dissipative coupling. Heating within
the ice depends upon the product of strain rate and deviator stress. The strain rate
depends upon the stress and the temperature owing to the temperature-dependence
of the viscosity and the sliding (interface) viscosity. It is purely a local effect due
to viscous heating. (ii) Thermokinematical coupling. The dependence of the flow
rate on the viscosity (itself affected by temperature) introduces a coupling between
temperature and velocity. Changes in the velocity affect advection, which in turn
affects the temperature distribution and the geometry of the ice sheet. This changes
the geometry of the domain on which the heat equation is solved. This coupling
occurs independently of whether there is significant viscous heating or not. (iii)
Free-surface-driven dissipative coupling. As in the previous case, the dependence of
the flow rate on the viscosity (itself affected by temperature) introduces a coupling
between temperature and velocity. Such changes in the velocity affect the free-
surface geometry. This is turn affects the stresses within the ice, which alter the
dissipative heating. This coupling occurs independently of any other heat transport
mechanisms. (iv) Glacier–lithosphere thermal coupling, which is a direct coupling
between the temperature fields in the ice and the rock. It is known to be a
quantitatively significant effect (Ritz 1987). All of these couplings are included in this
study.

The mechanical model used here is the shallow-ice approximation (Hutter 1983)
which omits stresses apart from the horizontal plane shear components. These
omissions can be important when the flow is streamed, and symmetry strongly
broken. However, this paper is primarily concerned with the inception of symmetry
breaking, or flows where the symmetry is weakly broken, for example in the upstream
areas (Bamber, Vaughan & Joughin 2001).

To this end, a base case of a uniform flow down a slope is constructed, and the
coupled flow and thermal solutions are then perturbed. The stability of the flow is
investigated through solution of a numerical eigenvalue problem. This is expressed
in terms of the Fourier coefficients, calculated from the Fourier transform over the
horizontal plane of the ice thickness and the temperature (which depends upon the
vertical coordinate). Cases are investigated where flow is by internal deformation;
in addition, the effect of temperature-dependent sliding is simulated by introducing
an activation energy for sliding. This construction allows an increase in velocity
over a narrow temperature range centred on the melting point. It can be justified
by appeal to theoretical predictions of sub-temperate basal sliding (Fowler 1986) or
by empirical/theoretical considerations of molten patches (Hughes 1988; Kleman,
Hättestrand & Clarhäll 1999).

A search for stable and unstable regimes is performed over a parameter space
defined by the ice thickness, the slab slope, the heat transport equation boundary
conditions, the accumulation rate and the two wavelength components. Two types of
instability are found at finite wavelength.
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Instabilities in thin-film flows other than glaciers have been studied for some
time. Two particular lines of enquiry are relevant here. Firstly, the thermal coupling
induces large variations in viscosity. Viscosity stratification can destabilize shear flows
(Yih 1967; Hooper & Boyd 1983). These works consider perturbations to the Orr–
Sommerfeld equation, and instabilities can exist for all non-zero Reynolds numbers,
with the magnitude of the instability being proportional to the Reynolds number.
At freezing point, under a deviatoric stress of 105 Pa, the viscosity of ice is around
1013 Pas, and for flows at 100 myr−1 of thickness 1000 m, a typical Reynolds number
is around 10−13. This gives times cales for evolution of the Yih modes very much
longer than the lifetime (105 to 107 a) of an average ice sheet, meaning that this source
of instability can be ignored in the present analysis.

Thin-film researchers have also looked at thermal effects (Reisfeld & Bankoff 1992;
Oron, Davis & Bankoff 1997; Davis 2000). These have been for flows a few millimetres
thick at most, where temperature changes can occur much more quickly than changes
in the free-surface geometry, and the thermal and flow problems decouple, unlike the
present case. A more closely analogous case is of hot lava (Balmforth & Craster,
2000), which is of interest because a fingering instability is found. This study differs
from the present case in two important ways: the temperature is independent of
the vertical coordinate, and viscous heating can be ignored. This diversity of studies
illustrates the likely complexity of thermoviscous coupling.

2. Model formulation
The normal-mode analysis linearizes about a base case of quasi-uniform flow of

ice of fine thickness down the infinite plane, with recharge by accumulation. The
ice overlies a half-space of rock. It is supposed that the wavelengths considered are
small enough for the flow not to increase substantially over this length. Boundary
conditions consist of a supply of heat to the base of the rock or the ice, and a
prescribed surface temperature. Dissipative heating is considered, and the dependence
of ice and sliding viscosity on temperature are included when solving the nonlinear
equation coupling temperature and ice flow. Momentum terms are vertically integrated
using the shallow-ice approximation. Specific examples of base flows are discussed
further in § 3. The normal-mode analysis yields a linear coupled eigenvalue problem
in the thickness of the ice, the temperature in the ice and the temperature in the
bedrock. After basic definitions, the eigenvalue problem is presented in § 2.3, followed
by the details of its derivation.

2.1. Governing equations, scaling, linearization and Fourier transform

The setup of flow down an infinite plane is illustrated in figure 1. Dimensional
quantities are represented by a tilde, non-dimensional quantities without a tilde.
Fourier transforms are represented by a caret. The coordinates are (x̃, ỹ, z̃), where z̃

is perpendicular to the base plane and x̃ is in the zeroth-order flow direction. The
z̃-direction is called ‘vertical’ and the r̃ =(x̃, ỹ) plane ‘horizontal’. The thickness of the
ice is given by z̃ = H̃ (r̃, t̃), while the upper and lower surfaces are given by z̃ = s̃(r̃, t̃),
z̃ = b̃(r̃, t̃) respectively, and t̃ represents time. Superscripts (s), (b) indicate evaluation
at the surface or base respectively. The surface z̃ = b̃(r̃, t̃) forms an upper surface for
the bedrock. The operators ∇H, ∇H ·, represent the horizontal gradient and divergence
respectively.
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–k  ζθ = HQG

Figure 1. Coordinate sytem for flow down an infinite plane with perturbed upper and lower
surfaces, streamlines and a typical zeroth-order vertical temperature distribution (see axes on
the left). One possible basal boundary condition (no sliding, no thermal inertia in bedrock) is
indicated. Note the two vertical coordinates z, ζ and the vector horizontal coordinate r =(x, y)
where x is in the downslope direction and y represents transverse flow. The normalized
coordinate ζ ≡ (z − b)/(s − b) is used within the ice.

The three-dimensional velocity field is conveniently represented by the vertical
velocity w̃ and the horizontal velocity vector ũ = (ũx, ũy), and we also use ṽ =
(ũx, ũy, w̃). The volume flux Q̃ =

∫ s̃

b̃
ũdz is used frequently throughout the paper.

The governing equations, which apply to all r̃, are

∇H · ũ + ∂z̃w̃ = 0, b̃(r̃, t̃) � z̃ � s̃(r̃, t̃), (2.1a)

∂t̃ s̃ + ũ · ∇s̃ = w̃ + ã, z̃ = s̃(r̃, t̃), (2.1b)

∇ · σ̃ + ρ̃ g̃ = 0, b̃(r̃, t̃) � z̃ � s̃(r̃, t̃), (2.1c)

σ̃ (s) · n(s) = 0, z̃ = s̃(r̃, t̃), (2.1d)

ṽ(b) = 0,

equation (2.4) & n(b) · ṽ(b) = 0,

frozen bed,
melting bed,

}
z̃ = b̃(r̃, t̃), (2.1e)

∂t̃ θ̃ + ˜u · ∇Hθ̃ + w̃∂ z̃θ̃ = κ̃∇2θ̃ +
1

ρ̃c̃
D̃, b̃(r̃, t̃) � z̃ � s̃(r̃, t̃), (2.1f)

θ̃ (s) − θ̃ s = 0, z̃ = s̃(r̃, t̃), (2.1g)

Kr∇θ̃ (b)
r · n(b) − ṽ(b) · σ̃ (b)n(b) = Ki∇θ̃ (b) · n(b) z̃ = b̃(r̃, t̃), (2.1h)

∂t̃ θ̃ r = κ̃r∇2θ̃ r , z̃ � b̃
(
r̃, t̃

)
, (2.1i)

θ̃ (b) = θ̃ (b)
r , z̃ = b̃

(
r̃, t̃

)
, (2.1j)

−K̃r∂z̃θ̃ r = Q̃G, z̃ → −∞. (2.1k)
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Here (2.1a) expresses conservation of mass in the ice; (2.1b) is the free-surface
kinematic condition, where ã is accumulation rate of ice, expressed as a volume rate
per unit area; (2.1c–e) describe conservation of momentum in the ice, where σ̃ is the
stress tensor, ρ̃ is the density of ice, g̃ = g̃(ε, 0, −1) is the gravitational acceleration
vector (note the existence of a downstream body force which drives the flow) and
n is the normal vector at the indicated surface; (2.1f –h) represent conservation of
heat in the ice, where θ̃ , θ̃ r are the temperatures in the ice and rock respectively, θ̃ s is
the prescribed surface temperature, κ̃ is the thermal diffusivity of ice, c̃ is the specific
heat capacity, D̃ = 1

2
trace(τ̃ · ẽ) is the dissipation, τ̃ is the deviatoric stress and K̃i, K̃r

are the thermal conductivities of ice and rock respectively; and (2.1i–k) represent
conservation of heat in the rock, where κ̃r is the thermal diffusivity of the rock and
Q̃G is the geothermal heat flux. A reduced form of these equations will be described
and used.

The constitutive relations have two parts. (i) A nonlinear viscous relationship within
the ice

ẽ = ÃcR(θ̃ , p̃) |τ̃ |n−1
τ̃ , (2.2)

where ẽ is the strain-rate tensor, the deviatoric stress tensor τ̃ has a second invariant
τ̃ , defined by

τ̃ 2 = 1
2
trace(τ̃ 2), (2.3)

p̃ is the pressure, n is the Glen index, Ãc is a rate factor and R is a dimensionless
function which expresses the dependence of the flow relation on scalars such as
temperature and pressure. The temperature dependence in this paper is modelled
through Arhenuis-type relationships. (ii) An isotropic sliding relation of the form

ũ(b)
‖ = ÃsS(θ̃ , p̃)

∣∣T̃ (b)
∣∣	−1

T̃ (b), (2.4)

where ũ(b)
‖ is the sliding velocity, T̃ (b) is the basal tangential traction, 	 is the slid-

ing index, Ãs is the sliding rate factor and S(θ̃ , p̃) is a dimensionless function
expressing the dependence of sliding velocity on temperature and pressure. The
constitutive relationships are discussed in the Appendix, § A.2.

Thicknesses H and elevations z, s, b are scaled by H̃ ∗(asterisk subscripts imply a
scale magnitude), and horizontal positions r = (x, y) are scaled by

L̃∗ = H̃ ∗/ε. (2.5)

Note that the downstream body force component ε has been chosen to be the aspect
ratio of the flow as well. This choice ensures that the downstream body force in
the scaled system is unity, but requires ε2 be small in order to use the shallow-ice
approximation.

Dimensionless field quantities within the ice are expressed in a normalized vertical
coordinate ζ defined by

0 � ζ = H̃ −1(z̃ − b̃) = H −1(z − b) � 1. (2.6)

Hindmarsh & Hutter (1988) and Hindmarsh (1999) write out the associated
differential transforms. In physical units the operators ∇H · , ∇H act in the (r̃, z̃)
coordinate system, while in the dimensionless system they act in the in (r, ζ ) system.
Pressure and stress are scaled by ρ̃g̃H̃ ∗, where g̃ = | g̃| is the acceleration due to
gravity. In dimensionless form, the gravity vector g has components (ε, 0, −1) where
ε2 � 1. This is the same quantity as used in (2.5). The deviator stresses τ are scaled by
ερ̃g̃H̃ ∗. The temperature in the ice θ(r, ζ, t) (note the dependence on the normalized
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vertical coordinate) and in the rock θr (r, z, t) are scaled by the temperature magnitude
θ̃ ∗. The accumulation rate a and the vertical velocity w are scaled by ã∗ = ũ∗H̃ ∗/L̃∗,
the flux has scale given by q̃∗ = ũ∗H̃ ∗ and time is scaled by t̃∗ = L̃∗/ũ∗. The choice of
ũ∗ depends on the flow mode and is discussed in § A.2, where scalings for Ac and As

may also be found.
Advantage is taken of the small aspect ratio of the problem to simplify the governing

equations (2.1) by applying the standard (Hutter 1983; Morland 1984; Fowler 1992)
shallow-ice approximation (SIA). The SIA expands the governing equations in terms
of the aspect ratio ε, simplifying the mass and momentum conservation equations
(2.1a–e) so that the velocity and flux can be computed directly by quadrature, using
equations (A 18) and (A 19). Details are given in the Appendix. The relevant field
variables are subsequently linearized with a small parameter µ about a base-case
solution (steady uniform flow down an infinite plane), e.g.

H = H0 + µH1 (r, t) , b = µb1 (r, t) , Q = Q0 + µ Q1 (r, t) , (2.7)

etc., and are used to derive a set of zeroth- and first-order equations expressing
conservation of mass, momentum and energy.

A Fourier transform in the horizontal plane is then applied to the first-order
equations, and the first-order fields can be expressed as plane waves

H1 = Re{Ĥ1 exp(λt − ik · r)}, θ1 = Re{θ̂1(ζ ) exp(λt − ik · r)}, (2.8)

etc., where λ is the eigenvalue, the wavenumbers are given by k = (kx, ky) and the
caret indicates the Fourier coefficient of the transform over the r-plane only.

2.2. The base flow

The scaling is specified to ensure that H0 and as many as possible of the other zeroth-
order quantities are unity. In particular Q0 = (1, 0), and the zeroth-order horizontal
velocities u0 are given by (A 19).

At zeroth order the heat equations (2.1f –k) are

ψ0∂ζ θ0 = β∂2
ζ θ0 + α∂ζu0x (1 − ζ ) , 0 � ζ � 1, (2.9a)


u
(b)
0x − Kr∂zθ

(b)
r0 = −∂ζ θ

(b)
0 ζ = 0, (2.9b)

θ0 (ζ = 1) = θs
0 , ζ = 1, (2.9c)

κr∂
2
z θr0 = 0, z < b, (2.9d)

−Kr∂zθr0 = QG, z → −∞, (2.9e)

where ψ0 is defined in (2.14) and the parameters β, α, 
 are dimensionless order-unity
thermal parameters given in (A 27). The spatial coordinates ζ, z are the independent
variables of this equation. In practical computations, the flux is treated as the target
variable (q̃∗ = H̃ ∗ũ∗ is specified), and the thickness scale H̃ ∗ is adjusted until a steady
solution can be found. This process of adjustment is somewhat complicated, as the
thickness scale and flux scale imply a required velocity scale, which is constructed
by scaling the relevant rate factors through (A 6) (internal deformation) or (A 12)
(sliding). However, these rate-factor scales depend upon the zeroth-order temperature
field obtained from solution of (2.9), which implies an iterative procedure in obtaining
the thickness scale and temperature field consistent with the target flux. This can
proceed because the thickness and velocity scales completely determine the parameters
κ, κr, α, 
 used in the zeroth-order equations (2.9). The sliding velocity u

(b)
0x is either
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0 (internal deformation) or 1 (sliding) by construction, and

∂ζu0x = (n + 2)
R(θ0)

R0

(2.9f)

is the zeroth-order statement of the scaled shear relationship (A 10).

2.3. The eigenvalue problem

The first-order equations lead to the formulation of an eigenvalue problem in
(Ĥ1, θ̂1, θ̂1r ), presented below in equations (2.10)–(2.13). The derivation of the
eigenproblem is outlined in the Appendix, presenting the momentum balance, the
constitutive relationships, the computation of the flow fields, the material balance and
the heat balance. The labelling within the equations below is to facilitate discussion
in § 4.2. Specifically, the eigenproblem comprises the following. (i) The scalar equation
for the ice thickness

λĤ1 = ikx




(iii),(iv)︷ ︸︸ ︷
(m + νikx)Ĥ1 +νikxb̂1 +

(ii),(iv)︷ ︸︸ ︷
C[θ̂ 1; 1]


 − k2

y ŝ1, (2.10)

which is obtained from (A 20) and (A 24). The quantity C[θ̂ 1; ·] is a functional
expressing the dependence of the (sliding) viscosity on the temperature, defined in
(A 21), and m, ν are constants which depend on the constitutive relationships and the
flow mode of the ice-sheet, defined in (A 15). (ii) The ice temperature field equation

λθ̂1 −

(v)︷ ︸︸ ︷
iu0xkx θ̂1 +ψ0

dθ̂1

dζ
+ ∂ζ θ0ψ̂1 = β

d2θ̂1

dζ 2
+ GĤ1 +

(ii)︷︸︸︷
αD̂1, 0 < ζ < 1, (2.11a)

G ≡ ψ0∂ζ θ0 − 2β∂2
ζ θ0, (2.11b)

with top and bottom boundary conditions

θ̂1 − γ ŝ1 = 0, ζ = 1, (2.12a)

dθ̂1

dζ
= −∂ζ θ

(b)
0 Ĥ1 − Kr

Ki

∂zθ̂ r1 + 
u
(b)
0x


F ŝ1 −

(ii)︷ ︸︸ ︷
C[θ̂ 1, 1]


 , ζ = 0, (2.12b)

F ≡ (ν + 1) (1 + ikx) . (2.12c)

(iii) The bedrock temperature field equation

λθ̂ r1 = βr∂
2
z θ̂ r1, −∞ < z � b, (2.13a)

−Kr∂zθ̂ r1 = 0, z → −∞, (2.13b)

θ̂ r1 − θ̂1 = 0, z = b. (2.13c)

Equations (2.11)–(2.13) are obtained directly by linearization of (A 25). The parameters
β, α, 
, βr are dimensionless order-unity thermal parameters given in (A 27); γ is the

lapse rate; ∂ζ θ
(b)
0 is given in (2.9b); the heat equation whose solution yields θ0 is also

given in (2.9), and ψ0 and ψ̂1 are quantities related to the vertical velocity in the ice,

ψ0 ≡ −a0

∫ ζ

0

u0x dζ ′, ψ̂1 ≡ −ik · (ζ Q̂1 − q̂1), (2.14)
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Figure 2. Zeroth-order steady-state solutions for no dissipation (us
x0 = 0) and dissipation

(us
x0 = 1), sliding (slid) and internal deformation (IDef) with thermoviscously uncoupled

(dA/dθ = 0) and coupled (dA/dθ 
= 0) flow. The zoom shown in the inset has same data
aspect ratio as the main plot, so that slopes can be directly compared. The dimensionless
diffusivity β = 0.04.

where the accumulation rate is denoted by a0, and the zeroth-order downstream
velocity u0x is defined in (A 19). The quantity ψ̂1 is defined in terms of the horizontal

gradient of the first-order fluxes ( Q̂1, q̂1) given in (A 20). The dissipations are given
by D0 = 2AcR(θ0)(1 − ζ )n+1 and

D̂1/D0 = FĤ1 +
Ṙ (θ0)

R (θ0)
θ̂1. (2.15)

The constitutive parameters Ac and R are defined in § A.2.

3. Multiple solutions of the zeroth-order equation
The parameters of the zeroth-order steady problem are the accumulation rate, the

ice thickness, the geothermal heat flux, the surface temperature and the longitudinal
component of gravity. The dimensionless system has no fewer free parameters. It
is therefore convenient to present results in physical units. Examples of solutions
to the zeroth-order system (2.9) may be found in Paterson (1994) and Hindmarsh
(1999). Solutions were obtained numerically using finite-difference methods. Figure 2
show some solutions for cases where there is viscous heating and where there is
thermoviscous coupling as well as more standard cases. Note the existence of a
boundary layer, and the low sensitivity of the thickness of the boundary layer to
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Parameter Combination 1 Combination 2

ã (−5, 0, 0.03, 0.1, 0.3) myr−1 (−5, 0, 0.03, 0.1, 0.3) myr−1

Q̃G 0.06 W m−2 (0.04, 0.08) W m−2

θ̃ s −25◦C (−40, −10)◦C,

ε (10−4, 10−3, 2 × 10−3, 5 × 10−3, 10−2, 10−1) 2 × 10−3

Table 1. Parameter study in the accumulation rate ã, the geothermal heat flux Q̃G, the surface
temperature θ̃ s and the x-component of gravity ε. The parameter study comprised the sets of
all possible combinations in each of the two columns.

mode of deformation. Morland (1984) carries out a scale analysis of the boundary
layer which is consistent with these finding.

A parameter study of zeroth-order solutions comprising 50 combinations of the
parameters ã, Q̃G, θ̃ s and ε, given in table 1, was carried out. For each combination of
the parameters, steady solutions were computed for different thicknesses H̃ � 0 for the
range θ̃

(b)
0 = [θ̃ (s)

0 , θ̃m]. In general, the discharge and basal temperature are bi-valued
functions of thickness. Previous workers have found tri-valued solutions, with an
additional fast flow branch, where the flux increases with thickness. This corresponds
to a change in the basal boundary condition where the basal temperature has reached
the melting point. In this third branch, the flux increases with thickness primarily
because the basal traction increases with thickness. This branch is not considered in
this paper.

For given combinations of accumulation rate, ice thickness, geothermal heat flux
and surface temperature, there is frequently a maximum thickness. Figure 3 shows
plots of the discharge QH , considered as a function of the zeroth-order thickness
H̃ ∗, for six different values of the plane slope ε. The subscript H indicates that the
dependent variable is being considered as a function of the thickness. The geothermal
heat flux in these examples was 0.06 Wm−2 and the surface temperature was −25◦C.

An observation from the computations is that the flux and basal temperature
vary monotonically, which means that the basal temperature is also a two-valued
function of thickness, with turning points occurring for the same thickness as for the
discharge/thickness curves. Where the slopes are relatively small, the flux and basal
temperature vary monotonically with the thickness, but for ε � 0.002 the functions
becomes bi-valued. This is particularly true for larger positive accumulation rates,
while the case with ablation only exhibits bi-valuedness for ε = 0.1. Other studies show
that there is very little dependence of the shape of the curve on geothermal heat flux,
and that warmer surface temperatures can suppress the emergence of bi-valuedness.

Informally, systems are held to be unstable when the slopes of QH or θ
(b)
H are

negative; this would be true if the evolution equations had one evolving mode. The
results of the next section are anticipated by pointing out that unstable thicknesses,
as revealed by a normal-mode analysis, do not correspond to places where the these
slopes are negative, and in fact such negative slopes are neither necessary nor sufficient
for instability.

4. Computation of the normal modes.
The eigenvalue problem is solved by discretizing equations (2.11), (2.12), (2.13),

yielding an algebraic eigenvalue problem. The resulting matrix operator contains one
row corresponding to Ĥ 1, and a number of rows corresponding to the temperature
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Figure 3. Flux thickness (i.e. QH (H )) diagrams for flow by internal deformation with
θ (s) = −25◦C, QG = 0.06Wm−2. In (a–f ) the downslope gravity component ε is varied, and
within each figure the accumulation rate ã is varied according to (i) −5; (ii) 0; (iii) 0.03;
(iv) 0.1; (v) 0.3ma−1. Computations are for θ (b) ∈ [θ (s), 0]. Zones in (QH ,H )-space which are
unstable are indicated by solid lines, stable flows by dotted lines. Sufficiently high downslope
gravity components (c–f ) generate a fold catastrophe. The sign of Q′

H (H ) does not reliably
determine stability.

equation discretization points in the ice and bedrock. Tests were made against
solutions to the eigenvalue problem for the temperature equation, and the analytical
Jacobian was checked against the numerical Jacobian.

4.1. Cases with restricted coupling

The uncoupled theory for the thickness evolution uncoupled in every way from
temperature has eigenvalue given by λ= −k2

xν − k2
y + ikxm (Nye 1959). Eigenvalues

of the uncoupled temperature equation, with no horizontal advection, have been
investigated in a glaciological context by Hanson & Dickinson (1988), who remind us
that it is a Sturm–Liouville problem, implying the eigenvalues are real, and correspond
to stable behaviour. Some similar computations, not reported in detail in this paper,
extend this to cases where there is horizontal advection, heat flow in the bedrock,
and dissipation by sliding or internal friction, but with rate factors which do not
depend upon the temperature. There are some features of interest, in particular the
way in which horizontal advection and lithospheric temperature variations introduce
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Figure 4. Sketch of surface showing the most positive real part of the eigenvalue as a function
of surface wavelength (Lx,Ly). Typically, the surface is divided into three areas: Regime A,
Regime B (both unstable regimes) and Stable Regime. Quantitative examples are provided in
figure 5. Regime A shows strong dependence on longitudinal wavelength and weak dependence
on transverse wavelength. Regime B has weak dependence on both wavelengths.

dispersion (i.e. the mode wave velocity depends on the wavenumber), and the strong
coupling between the basal, conductive boundary layer and the bedrock in the slowest
modes.

4.2. Thermal coupling

The results in this section refer to solutions to the eigenproblems set out in
(2.10), (2.11), (2.12) and (2.13) . This solution yields the eigenvalue λ, while the
eigenfunctions comprise the triplet

E = (θ̂ r1(z), θ̂ 1(ζ ), Ĥ1).

The eigenvalue problem is solved for wavenumber pairs (k̃x, k̃y) corresponding to

wavelengths (L̃x, L̃y) ranging over 2π(0.2, 1000) km. Some of these cases correspond
to situations where the shallow-ice approximation is no longer respected, but this
turns out not to be crucial, as an asymptotic stability regime of the SIA is reached
in these cases. The eigenvalue is a complex number, whose real component provides
information about growth or relaxation of a mode, and whose imaginary component
provides information about the wave speed of the mode. In all cases, the wave speed
was positive, i.e. features are advected downstream. The discussion below refers to
the real part of the eigenvalue, which indicates stability when it is negative.

Figures 4 and 5 illustrate features of the solution to the eigenproblem, for cases
where flow is by internal deformation only. From inspection of many results, it is
clear that a characteristic dependence of the most positive eigenvalue upon wavelength
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emerges, which is sketched in figure 4. There is a stable regime which occurs for all
transverse wavelengths and at relatively short longitudinal wavelengths. There is
an unstable regime (Regime A) lying in the quarter of (L̃x, L̃y)-space where both
transverse and longitudinal wavelengths are relatively large, where the growth rate
depends on the longitudinal wavelength but only weakly on the transverse wavelength
of the mode. Finally, there is a regime (Regime B) in the quarter of (L̃x, L̃y)-space
where longitudinal wavelengths are relatively large and transverse wavelengths are
relatively small, where the growth rate depends very weakly on both wavelengths.
Regime B can be considered as a plateau. Some quantitative examples are shown
in figure 5. The regimes are not all exhibited in their entireties in these plots, as
sometimes the regime boundaries are at wavelengths outside the plots. Since growth
rates in Regime A are higher than in Regime B, unstable systems near bifurcation
exhibit only Regime A instabilities.

Figure 5 illustrates the most positive eigenvalue as a function of wavelength.
It considers cases where (Q̃G, θ̃ s) = (0.06 Wm−2, −25◦C), with indicated slope and
accumulation, where the basal temperature is at melting point, and the thickness
varies. Regime A instabilities are present in cases where the Regime B instabilities
are absent. Regime B instabilities appear with the plateau already present. Time
constants range from between ten years and one thousand years. The figure also
plots, using colour coding, the quantity max (|Ĥ |)/ max (|θ̂ |) for each eigenvector
corresponding to the unstable mode as a function of the wavelengths. In Regime B,
this ratio is for all practical purposes zero, while for Regime A, values from 0.00 up
to 0.04 are found. This corresponds to a roughly equal projection onto thickness and
temperature, since the temperature scale factor selected is rather small (1 K compared
with typical temperature variations of 25 K). This implies that Regime A instabilities
have a roughly equal effect on thickness and temperature, while Regime B instabilities
only operate on the temperature field.

Some of the internal deformation solutions were also computed in a configuration
where no thermal coupling with the lithosphere was permitted (results not shown
in detail). The linearized system was more unstable in the sense that bifurcations to
instability occurred at lesser thicknesses, occurred in a greater region of parameter
space and produced greater growth rates. Thus, thermal coupling with the lithosphere,
whilst not affecting the qualitative dynamics, does affect its quantitative aspects.

Finally, the effect of sliding switching on around the melting point through
the mechanism of a ‘sliding activation energy’ was considered. In the calculations
reported here, the sliding velocity as a proportion of the total upper surface
velocity was prescribed (either 0.5 or 0.9) and the sliding activation energy set to
Ẽs ∈

{
105, 106, 107

}
J. The lowest activation energy is comparable with the activation

energy for ice creep at melting point. These activation energy values correspond to
ratios of sliding velocity at θ̃m ± 0.1 K of {1.03, 1.4, 25} respectively (keeping the
stress constant). In the case where the activation energy is 105 J, the results were more
or less the same as for the case of internal deformation. This indicates that from
a dynamical point of view, the plug-flow asymptotics of Fowler (1992) are useful.
Time constants were between a few centuries and around a thousand years. As the
activation energy increases, time constants decrease to between 10 years or less (ẼS =
106 J) and sub-annual (ẼS = 107 J). The distinction in eigenvalue magnitude between
Regime A and Regime B instabilities was no longer found, but when one considers
the norm ratio max (|Ĥ |)/ max (|θ̂ |), the Regime A/Regime B distinction persists.

The physical causes of instability, and, equally importantly, damping can be
investigated by removing terms from the perturbation equations. The most positive
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Figure 5. Surfaces showing the most positive eigenvalue λ̃ in a−1 as a function of surface
perturbation wavelength (Lx,Ly). Studies are for the parameter set (QG, θ (s)) = (0.06W m−2,

−25◦C) and at θ
(b)
0 = 0 for: (a) a = −5 ma−1, ε =0.005; (b) a = −5 ma−1, ε = 0.01; (c) a =

−5 ma−1, ε = 0.1; (d) a = 0.1 ma−1, ε = 0.005; (e) a = 0.1 ma−1, ε = 0.01; (f ) a = 0.3 ma−1,
ε = 0.01. These diagrams show clearly the unstable Regimes A and B as well as the Stable
Regime (figure 4). Colour coding shows max (|Ĥ |)/max (|θ̂ |), for the eigenvector corresponding
to the eigenvector with most positive real part. This shows the relative significance of thickness
changes and temperature changes in this most unstable mode. Note that significant projection
onto the thickness only occurs for longer transverse wavelengths: for shorter wavelengths, the
instability is confined to the temperature field.

non-trivial eigenvalue for a number of alterations to the eigenproblem equations
(2.10)–(2.13), and the perturbed flux definition (A 20), plotted as a function
of wavelength, are shown in figure 6. These were for the case (Q̃G, θ̃ s, ε, ã) =
(0.06 Wm−2, −25◦C, 0.005, 0.3ma−1) with the base of the ice at the melting point.
Figure 6(i) is the full eigenproblem. The other figures have terms removed according to
the corresponding labelling in the eigenproblem. Thus, in figure 6(iii), the eigenproblem
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Figure 6. Surfaces showing the most positive eigenvalue λ̃ in a−1 as a function of surface
perturbation wavelength (Lx,Ly). Studies are for the parameter set (QG, θ (s)) = (0.06W m−2,

−25◦C), for a = 0.3 and ε = 0.005 and at θ
(b)
0 = 0. The different cases have corresponding

labelled terms removed from the eigenproblem set out in (2.10)–(2.13) and (A 20).

was altered by removing the term labelled (iii) in (2.10), while in figure 6(ii), the
eigenproblem was altered by removing the terms labelled (ii) in (2.10), (2.11) and
(2.12a). Case (i) is the true eigenproblem, against which all the other cases should be
compared. In Case (ii) all the heating terms are removed, which completely stabilizes
the flow, as expected. Case (iii) has the thickness self-decay term removed, showing
that this term has a primary role in stabilizing flows at short wavelengths. In Case (iv),
the effects of both temperature and thickness on thickness relaxation are removed.
A notable feature is the y-independence of the stability diagram, showing that it
is the evolving free surface that stimulates the lateral dependence. Case (v) has the
horizontal advection term removed, which engenders further instabilities at short
x and y wavelengths, indicating that horizontal advection stabilizes the flows at
short wavelengths. Finally Case (vi) has the vertical advection/temperature coupling
removed, again showing the role of advection in suppressing instability at shorter
wavelength. (Note that to represent this case, the altered flux definition in (A 20) is
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only used in the vertical advection term ψ̂1 in (2.14) and not to rederive the continuity
equation (2.10).)

5. Discussion and conclusions
This paper has confirmed previous results (Nye 1971; Clarke et al. 1977) that

thermally coupled flow of ice down an infinite plane is linearly unstable. These
earlier studies did not consider finite horizontal wavelengths. The present study has
extended these studies by explicitly demonstrating the dependence of the instability
on horizontal wavelength with, for plane flow, a maximum growth rate at a finite,
glaciologically relevant, wavelength. The rate constants for the instability are large
enough at high slope (0.1) to suggest that surges of mountain glaciers, which occur over
a few years (Paterson 1994) could be caused by thermal instabilities. By considering
only the slower infinite wavelength instabilities, Clarke et al. (1977) reached the
opposite conclusion. The present study supports computations that suggest that the
Trapridge Glacier surges could be of thermal origin (Fowler, Murray & Ng 2001).
The calculations confirm that the computed instabilities driving the fast, unstable
phases of relaxation oscillations and surge-like phenomena can initiate at finite
wavelengths, in regions where the ice is steeper (Payne 1995), and that the flow will
restabilize and stagnate at low slopes which arise from exhaustion of the ice reservoir.

The normal-mode analysis results do not entirely correspond with a scalar analysis
of the stability, in which the flux is supposed to be a scalar function of the thickness. In
such an analysis, the sign of the derivative dQH/dH determines stability through the
continuity equation ∂tH + ∂xQ = a. (Recall, Q =Q (r, t) and Q = QH (H ) .) To assess
heuristically the stability of the scalar system one writes ∂tH +(dQH/dH ) ∂xH = a and
replaces this as a scale perturbation by Ḣ + (dQH/dH ) H = 0. This is not rigorous,
because the flux is a function of the temperature, thickness and slope, and these have
associated decay time constants. The normal-mode analysis presented in this paper
takes all of these factors into account, and shows that a negative dQH/dH is neither
a necessary nor a sufficient condition for instability.

By using the technical device of a quasi-uniform flow, vertical advection has
been considered self-consistently and found not to influence the qualitative dynamics
significantly. The instability occurs whether the thermal inertia of the bedrock is
considered or not, although the thermal properties of the bed do affect the quantitative
aspects of the instability. Consideration of transverse undulations in the glacier surface
reveals there to be two distinct wavelength regimes where unstable behaviour occurs.
The location of these regimes in wavelength space depends upon the ice thickness, the
bed slope, the surface temperature, the geothermal heat flux and the accumulation
rate.

Regime A occurs for relatively longer transverse wavelengths, where there is a
distinct maximum in the unstable eigenvalues at dimensionless longitudinal length
scales between 1 and 10 (roughly speaking, between 100 and 1000 km). Regime A
unstable mode eigenvectors have a reasonably strong projection on the thickness (i.e.
unstable behaviour involves changes in the flow thickness). Regime A instabilities
presumably disappear at a certain transverse wavelength, owing to the stabilizing
effect of the transverse spreading of surface elevation. The wavelength below which
transverse spreading dominates is not small, and is often greater than 100 km, an
upper width for ice streams.

Regime B is in fact a plateau, occurring at relatively longer longitudinal wavelengths
(again, very roughly, between 100 and 1000 km) and relatively shorter transverse
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wavelengths, from a few tens of kilometres down to wavelengths comparable with the
ice-sheet thickness. (At this wavelength, the SIA breaks down.) Regime B instabilities
are generally in the region where Ly � Lx , and will therefore be manifested as the
growth of elongated thermal structures aligned with the flow. Regime B instabilities
do not have a strong projection onto the thickness, in other words the initial
development of these features is in the temperature field, and a detailed inspection of
the eigenfunctions shows that they project strongly onto the temperature field at the
base of the ice, where of course the dissipation is greater. Regime B instabilities may
even be ill-posed: if all modes grow at equal rates, the result is a random spatial field in
the temperature, which contradicts assumptions in the model formulation. Horizontal
conduction is expected to smooth short-wavelength features in the longitudinal
direction.

These results can be encapsulated by asserting that there is weak mode selection
of transverse wavelengths. There is no strongly preferred transverse wavelength at
which instabilities grow. This means that even though in a technical sense long flow-
parallel/short flow-transverse wavelength instabilities are predicted in this paper, it is
not clear that stream-like features should necessarily develop. All the computations
suggest that the bifurcation of the first unstable mode happens at very long transverse
wavelengths. In neither of the regimes is there strong dependence of the unstable
eigenvalue on the transverse wavelength. This means that the first unstable feature will
be ribbing, and the development of this will drive the system from steady state. The
linear stability of stream-like features in such regions of phase-space somewhat
removed from equilibrium has not been analysed here. Whether there is mode selection
in the transverse direction at larger amplitude might be revealed by a weakly nonlinear
analysis. Mode selection might also be influenced by physics not included in the model
formulation. Nonlinear calculations are needed to understand how the slower Regime
B fingering instabilities in the temperature fields grow, how they manifest themselves
in the thickness field and how they interact with the Regime A instability, which is
always present before Regime B instabilities appear.

Some reasonable conjectures regarding the Regime A and Regime B instabilities
can be made on the basis of the stability analyses of modified equations. The Regime
A instabilities have a strong dependence on the free surface. The stabilization of this
regime at relatively low longitudinal wavelengths is due to self-relaxation of thickness.
In contrast, the eigenfunctions associated with Regime B fingering instabilities do not
have a strong projection onto the thickness, and thus do not induce changes in the
free surface. Since Regime B instabilities are not strongly coupled with thickness, the
stabilization in the short-wavelength quadrant must come from x-derivative terms in
the heat equation, which are horizontal advection or the dependence of the vertical
velocity on the horizontal gradient of the rate factor and thence the temperature. In
the parameter regimes considered the stabilization occurs at wavelengths too long for
horizontal conduction to be important.

Some numerical models have computed spontaneous development of elongated
features, aligned with the flow direction, bearing many similarities to ice streams, which
arise as a result of thermoviscous coupling (e.g. Payne et al. 2000). If these are related
to the Regime B instabilities, which do not strongly project onto thickness, one should
note that present-day finite difference grids, while sampling Regime B instabilities, do
not sample them over the whole range of wavelengths where instabilities occur. It is
unlikely that these models properly describe the dynamics of the Regime B instabilities
at the moment. Plane-flow numerical models (which perforce only represent
Regime A instabilities), do in general exhibit instabilities which drive relaxation
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oscillations. Payne (1995) describes computations where an instability is initiated
in high-slope areas (see figure 3) and propagates backwards into the ice sheets –
this appears to correspond to a Regime A instabilty. Regime A instabilities have a
clearly defined maximum at longitudinal wavelengths (generally > 100 km) properly
sampled by present-day models. If the fast phases of plane-flow relaxation oscillations
reported by several authors are related to Regime A instabilities, one can have some
confidence that they are being adequately resolved by these models. The recovery
phase of a relaxation oscillation, which follows exhaustion of a reservoir, would
correspond to low-slope, stable, slow-flowing ice-sheet geometries. Some discussion
of the qualitative dynamics of thermally driven relaxation oscillations can be found
in (Fowler et al. 2001). There is unlikely to be a simple relationship between the
imaginary component of the eigenvalue and the presence of a relaxation oscillation.

Perhaps the most important conclusion is the weak lateral mode selection in
thermoviscous instabilities. Since ice streams are of broadly consistent width (tens of
kilometres) this suggests that the controls on their lateral dimensions do not stem
from thermoviscous coupling. It is frequently suggested that some ice-stream locations
do not have an obvious topographic control. However, there is a thickness control
on flow stability. This means that a slight depression in the bedrock can trigger a
local instability, and streamed flow. One might expect then some sensitivity to basal
topography (e.g. Hulton & Mineter 2000), and weak topographic control leading to
strong pattern formation. The enhanced ability of the ice stream to drain the ice
implies that the stable areas will not thicken, and consequently remain stable.

Appendix. Derivation of the eigenvalue problem
A.1. Momentum balance

The standard (Hutter 1983; Morland 1984; Fowler 1992) shallow-ice approximation
(SIA) is used, which expands the momentum-balance equations for slow creeping
flow (2.1c) in terms of the aspect ratio H̃ ∗/L̃∗, which for convenience is set equal to
ε, the ratio of the x- and z-components of gravity. After applying the scaling, the
quasi-static formula for the shear stress is obtained as the asymptotic approximation

τxz = −H (1 − ζ )(∂xs − 1) + O(ε2), (A 1a)

τyz = −H (1 − ζ )∂ys + O(ε2). (A 1b)

The SIA also yields

τ 2 
 τ 2
xz + τ 2

yz. (A 2)

By specifying H0 = 1, the zeroth-order shear stresses are

(τxz0, τyz0) = (1, 0)(1 − ζ ),

and first-order shear stresses in Fourier space are

(τ̂xz1, τ̂yz1) = (1 + ikx, iky)(1 − ζ )Ĥ1. (A 3)

The remaining stresses are not required. Basal tangential tractions are given by

T (b)
0 = (1, 0), (A 4a)

T̂
(b)

1 = (1 + ikx, iky)Ĥ1. (A 4b)

The shallow-ice approximation also shows that u(b) 
 u(b)
‖ .
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A.2. Constitutive relations

The ice is assumed to be below melting point for z > b. Flow of ice can occur by
internal deformation according to the viscous relationship (2.2) . The viscosity of ice
ranges by three orders of magnitude in the temperature range typical of large ice
sheets (Paterson 1994). The temperature dependence is modelled by a dual-Arrhenius
relationship

R(θ̃ , p̃) = c1 exp(−Ẽ1/G̃cθ̃) + c2 exp(−Ẽ2/G̃cθ̃), R(θ̃m, 0) ≡ 1, (A 5)

where θ̃m is the melting point of ice, (c1, c2) = (3.7 × 106, 5.4 × 1026), the activation
energies (Ẽ1, Ẽ2) = (60, 140) kJmol−1, and G̃C = 8.314 J mol−1 K−1 is the universal
gas constant. This relationship is quantitatively similar to that proposed by Hooke
(1981). The Clausius–Clapeyron constant is approximated as zero, which means that
the pressure dependence of viscosity is ignored. When internal deformation is being
treated, a useful choice of scale for the rate factor is

Ãc∗ = 2ÃcR̄0/ (n + 2) , (A 6)

which gives

Ac = (n + 2)/(2R̄0). (A 7)

This will be useful once the zeroth-order solution has been computed, as we can
specify

R̄0 = R̄ (θ0) . (A 8)

Specification of a velocity scale

ũ∗ = Ãc∗H̃
n+1
∗ ρ̃ng̃nεn, (A 9)

gives a flux scale q̃∗ = H̃ ∗ũ∗ that ensures Q0 = (1, 0). The shear relationship under
the SIA is

e�z 
 1
2
∂zu�, ∂zu� = (n + 2)

R

R̄0

τn−1τ�z, � = x, y. (A 10)

Sliding is described by (2.4) . Temperature dependence is expressed as

S(θ̃ , p̃) = exp

(
− ẼS

G̃C

(
1

θ̃
− 1

θ̃m

))
, (A 11)

where ẼS is a sliding activation energy. Appropriate values of this are discussed where
they are used. By construction S(θ̃m, 0) = 1. The activation energy is a descriptor of
how quickly the sliding turns on as a result of temperature change. The ‘sliding’
can be regarded as a highly concentrated shear in the basal region (Fowler 1992),
in which case it is reasonable to take the activation energy to be that of ice, and to
have sliding occurring at sub-zero temperatures. The sliding activation energy can
be used to simulate the way sliding is believed to increase around melting point; at
this temperature the sliding switches on. There are also some arguments in favour of
sub-zero sliding (Fowler 1986) as well as local sliding when the average temperature
is below the melting point (Hughes 1998; Kleman et al. 1999).

When sliding is being considered, the horizontal velocity scale ũ∗ is selected to
ensure a unit zeroth-order velocity, and the rate factor scale is then selected according
to

Ãs =
S0ũ∗

H̃ n
∗ρ̃

ng̃nεn
, (A 12)
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which also gives

AsS0 = 1.

Again, S0 is a choice of convenience, and will be defined as S(θb
0 , 0). (This construction

is not used in the perturbation. Computing a perturbed As using perturbed velocities
is discussed and warned against by Hutter (1983, Chap. 4).

A.3. Ice velocity and vertically integrated flux

The flux Q and the partial flux q are defined by

Q ≡ H

∫ 1

0

u dζ, q ≡ H

∫ ζ

0

u dζ ′, Q ≡ q (ζ = 1) ,

where the prime indicates a dummy variable. When internal deformation is being
considered, substitution of the approximate relationship (A 1) into (A 2), use of (A 10)
and two integrations with respect to ζ yields the usual flux formulae associated with
the shallow-ice approximation,

Γ = [∂xs − 1, ∂ys], (A 13a)

Q = − R̄

R̄0

Hn+2|Γ |n−1Γ , (A 13b)

q(ζ ) =
R̄q

R̄
ω(ζ ) Q, (A 13c)

ω(ζ ) ≡ (1 − ζ )n+2 + (n + 2)ζ − 1

(n + 2)(n + 1)
, (A 13d)

R̄q ≡ 1

ω(ζ )

∫ ζ

0

(ζ − ζ ′)(1 − ζ ′)nR dζ ′, (A 13e)

R̄ ≡ (n + 2)

∫ 1

0

(1 − ζ ′)n+1R dζ ′. (A 13f)

For sliding,

Q = ubH = −S (θ)

S0

H	+1 |Γ |	−1
Γ , (A 14a)

q = ζ Q. (A 14b)

Usually, the two flow mechanisms are considered separately, but some computations
have been carried out where both internal deformation and sliding occur, which
require minor adjustments to the following development. A combined notation to
represent internal deformation and sliding is

ν =

{
n

	,
m =

{
n + 2
	 + 1,

C =




2

n + 2
AcR̄ internal deformation

AsS sliding.
(A 15)

The horizontal velocity is given by u = −CuH
m−1 |Γ |ν−1

Γ , where

Cu =

{
2AcR̄u

AsS

internal deformation

sliding,
(A 16)

R̄u(θ) ≡
∫ ζ

0

R(θ)(1 − ζ ′)n dζ ′. (A 17)
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If we choose (A 7) or (A 12) we obtain C0 = 1,

Q0 = [1, 0], q0 =

[
R̄q

R̄
ω, 0

]
. (A 18a, b)

Other zeroth-order quantities are not in general unity. The first-order velocities are
given by

u0 =




(
(n + 2)

R̄u (θ0)

R̄0

, 0

)

(1, 0)

internal deformation

sliding.

(A 19)

The Fourier-transformed first-order fluxes are given by

q̂1x(ζ )/|q0(ζ )| = (m + νikx)Ĥ1 + νikxb̂1 +

(vi)︷ ︸︸ ︷
C[θ̂ 1; ζ ], (A 20a)

q̂1y(ζ )/|q0(ζ )| = ikyŝ1, (A 20b)

Q̂1 = q̂1(1). (A 20c)

In these relations, b̂1 represents a perturbation to the bed topography, and the square
brackets indicate that C is a linear functional defined by

C[θ̂ 1; ζ ] =




∫ ζ

0

Ṙ (θ0)

R (θ0)
θ̂1 dζ ′ internal deformation

Ṡ
(
θb
0

)
θ̂ b

1 sliding,

(A 21)

where the dot over R and S indicates differentiation.

A.4. Mass conservation

The mathematical device of quasi-uniform flow, which allows mass supply through
snowfall while retaining a horizontally uniform flow, implies a column-integrated
conservation condition ∂tH +∇ · Q = a,, where a is the accumulation rate, with point
conservation condition ∇ · u + ∂zw = 0. The point continuity condition at zeroth and
first order is

∂ζw0 = −u0xa0/Q0x, (A 22)

∂ζw1 + ∇ · u1 + ∂ζu0ikx (ζH1 + b1) = 0. (A 23)

The construction maintains the normalized vertical velocity distribution found in
the shallow-ice approximation, since necessarily ∂xu0x ∝ u0x and continuity implies
∂ζw0 = −u0xa0/Q0x. The first-order continuity equation in Fourier space is

λĤ1 − ik · Q̂1 = â1, (A 24)

The expression for Q̂1 (A 20) is inserted in this equation to obtain the thickness
evolution equation (2.10).

A.5. Heat balance

Using the scaling of Morland (1984), applying the shallow-ice approximation,
transforming into the normalized coordinate system, and then following the
development of Hindmarsh (1999) to write the vertical velocity in terms of the
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flux gradient, allows the heat equations (2.1f–k) to be written as

∂tθ + u · ∇Hθ +
ψ

H
∂ζ θ =

β

H 2
∂2

ζ θ + αD, 0 � ζ � 1, (A 25a)

ψ ≡ ζ∇ · Q − ∇ · q − ζa, (A 25b)

θ (s) − γ s = 0, ζ = 1, (A 25c)

−∂ζ θ = 
 (T b · ub − Kr∂zθr ), ζ = 0, (A 25d)

∂tθr = κr∂
2
z θr , z < b, (A 25e)

−Kr∂zθr = QG, z → −∞, (A 25f)

where as before the dimensionless field variables defined within the ice are functions
of ζ, the thermal conductivities of ice and rock are Ki and Kr , and D represents the
shallow-ice approximation of the heating due to internal dissipation given by

D = H −1 (1 − ζ ) ∂ζ u · T (b). (A 26)

Equation (A 25a) is the heat equation, the third term on the left-hand side representing
the vertical advection; (A 25b) is the vertical velocity in the normalized coordinate
system; (A 25c) is the upper surface prescribed temperature; (A 25d) is the heat-flux
boundary condition in the ice at the base, which include sliding heating; (A 25e) is
the heat equation in the bedrock; and (A 25f) is the flux boundary at depth in the
bedrock. Thus, following Ritz (1987), temperature variations within the lithosphere
z <b, modelled as a half-space, are included; θr represents the temperature in the
bedrock, κr is the thermal diffusivity of rock and QG is the geothermal heat flux. The
dimensionless parameters are given by

β ≡ κ̃

H̃ ∗ã∗
, βr ≡ κ̃r

H̃ ∗ã∗
, α ≡ g̃H̃ ∗

c̃θ̃ ∗
, 
 ≡ ερ̃g̃

H̃ 2
∗ũ∗

K̃i θ̃∗
. (A 27)

Linearization of the heat equation gives (2.9) at zeroth order, where the scaling
constructions H0 ≡ 1, T (b)

0 = [1, 0] have been used. At first order, the linearization
yields (2.11)–(2.13). This completes the description of the eigenproblem.
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